
NPS-OR-10-005 

 

 

 
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

 

A Multistatic Sonobuoy Theory 
 

by 
 
 

Alan R. Washburn 
 

August 2010 

Approved for public release; distribution is unlimited 
 

Prepared for:  Operations Research Department 
                         Naval Postgraduate School 

 
                         Monterey, CA  93943 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 

NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CA  93943-5001 

 
 
 
Daniel T. Oliver                                                                       Leonard A. Ferrari 
 Executive Vice President and 
President Provost 
 
 
 
This report was prepared for the Operations Research Department, Naval Postgraduate 
School, Monterey, California and partially funded by the Chair of Undersea Warfare, 
Naval Postgraduate School, Monterey, California. 
 
Reproduction of all or part of this report is authorized. 
 
This report was prepared by: 
 
 
 
 
ALAN R. WASHBURN  
Distinguished Professor Emeritus of  
Operations Research 

 

  
  
Reviewed by:  
  
  
  
  
R. KEVIN WOOD  
Associate Chairman for Research  
Department of Operations Research Released by: 
  
  
  
  
ROBERT F. DELL KARL VAN BIBBER 
Chairman  
Department of Operations Research 

Vice President and  
Dean of Research 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE 
ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-
YYYY) 08-2010 

2. REPORT TYPE 
Technical Report 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
A Multistatic Sonobuoy Theory 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Alan R. Washburn 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT  NUMBER 
NPS-OR-10-005 

 
 
 
 
 

 
 
 
 
 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
N/A 

10. SPONSOR/MONITOR’S ACRONYM(S) 

  

 

  
 

  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 

   

12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The characterizing feature of multistatic systems is the inclusion of geographically independent receivers that might hear echoes from 

any source. We develop a simple analytic theory to predict detection probability, and use it to study cost/effectiveness issues and the 
advisability of using co-located source/receiver pairs instead of independent sources and receivers. 
 

15. SUBJECT TERMS 
Multistatic, Bistatic 

16. SECURITY CLASSIFICATION OF: 
 

17. 
LIMITATION 
OF

18. 
NUMBER 
OF

19a. NAME OF RESPONSIBLE 
PERSON 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

UU 32 19b. TELEPHONE NUMBER (include 
area code) 
 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

ABSTRACT 

The characterizing feature of multistatic systems is the inclusion of 
geographically independent receivers that might hear echoes from any source. We 
develop a simple analytic theory to predict detection probability, and use it to study 
cost/effectiveness issues and the advisability of using colocated source/receiver pairs 
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1. INTRODUCTION 

We consider underwater sonar systems composed of sources and receivers. 
Detection occurs when a source generates a brief pulse of underwater sound that is 
reflected by its submarine target and then detected by one or more receivers, thereby 
revealing the submarine’s location. The source of sound might be a ship, a helicopter 
with a dipping sonar, an explosive charge dropped by an aircraft, or an active sonobuoy. 
If the receiver is always colocated with the source, the system is called monostatic, and 
can be roughly characterized by the distance at which detection is barely possible, the 
“detection range”. In multistatic systems, the sources and receivers are not colocated. 
Multistatic systems are more difficult to characterize than monostatic systems, but have 
some arguments in their favor. Among them are 

 Receivers are less expensive than sources, so it makes sense to employ 
more receivers than sources. For example, the U.S. Navy’s new SSQ-125 
active sonobuoy is expected to initially cost about seven times as much as 
the SSQ-110 passive sonobuoy that will listen for its signals (J. Cardarelli, 
personal communication, February 2010). 

 A multistatic system can employ different platforms for sources and 
receivers. A ship might be the source, while the receivers are sonobuoys. 

 Sources reveal their locations to submarines when they transmit, and 
submarines can use that information to avoid detection. However, the 
independent receivers in a multistatic system do not reveal their positions. 

 It is possible that the reflected signal will be received by multiple 
receivers. The resulting location estimate will be more precise, and the 
phenomenon can also help to eliminate some of the false alarms that 
monostatic active systems are normally prey to. Coon (1997) discusses the 
fusion of detections from multiple receivers. 

Our main ambition here is to quantify the probability of detection in a multistatic 
sonobuoy system. The restriction to sonobuoys (hereafter simply “buoys”) is because we 
intend to make no allowance for the effect of motion on the part of sources, receivers, or 
targets—all three entities are assumed to remain stationary in two-dimensional space. We 
will include the possibility that some of the sources are “posts”, which will mean that the 
source has a colocated receiver. Although we will consistently refer to detection by 
sonobuoy systems, detection by multistatic radar systems is subject to the same 
mathematics. 

The effectiveness of any sonobuoy pattern will depend on the geometric 
arrangement of the buoys, and the problem of selecting the arrangement to maximize the 
detection probability therefore arises. We will not consider such optimization questions, 
assuming instead that all buoys are simply located uniformly at random within some 
region. Our excuse for this is that our goals are strategic rather than tactical. Specifically, 
the goal is to quantify the detection probability as a function of the numbers of buoys of 
various types that are employed, rather than to determine exactly how they ought to be 



arranged. While detection probability depends on the geometric arrangement, it depends 
even more strongly on resources, and the assumption of random deployment will make it 
possible to expose the dependence on resources in an analytically simple manner. 

The U.S. Navy employs ASPECT, a tactical decision aid that is capable of 
predicting detection probability for multistatic sonobuoy fields. ASPECT considers 
geometric optimization questions, and employs a physical model that is more realistic 
than anything that will be employed here. However, ASPECT is a menu-driven  
Monte Carlo simulation that is not analytically suitable for considering resource 
allocation questions. Bowen and Mitnick (1999) describe the Multistatic Performance 
Prediction Methodology (MPPM). In MPPM, sources are arranged on a rectangular grid 
with fixed spacing, rather than randomly distributed as assumed here. Other multistatic 
models include the Multistatic Acoustic Simulation Model (MSASM, on which ASPECT 
is based), the Sonar Equation Modeling and Simulation Tool (SE-MAST) and the 
Surveillance Operational Concepts Model (SOCM). All of these models are more 
realistic and less tractable than the ones considered here. 

Many of the figures and tables referred to below were generated using a Microsoft 
Excel™ workbook named IEER.xls. Possession of this workbook would allow the reader 
to vary parameters, iterate simulations, verify logic, and possibly discover mistakes made 
by the author, who would appreciate being notified if that is the case. The workbook can 
be found among the downloads at http://faculty.nps.edu/awashburn/ . 

2. RANDOMLY PLACED FIELDS OF INDEPENDENT SOURCES AND 
RECEIVERS 

2.1 Detection Probability 

Our model of “randomly placed field” will throughout be a Poisson field. A 
Poisson field of points in n-dimensional Euclidean space is characterized by a single 
parameter , representing the average number of points per unit volume. Poisson fields 
have many desirable analytic properties, one of which is that the number of points inside 
any region with volume V is a Poisson random variable with mean V. In particular, the 
probability of finding no points inside such a region is exp(V), a fact that will be 
frequently employed below. We will also use two additional properties: 

 The superposition of a Poisson field with density  on an independent 
Poisson field with density  is a Poisson field with density  + . 

 If a Poisson field with density  is “thinned” by removing each of its 
points independently with probability p, then the remaining points 
constitute a Poisson field with density (1p). 

Consider, then, two independent, two-dimensional Poisson fields, one (sources) 
with density g and the other (receivers) with density h. Each source emits an 
omnidirectional sound that is reflected by a target, and the reflected energy is eventually 
received by each receiver. We assume that the transmission loss at a distance R is 
proportional to R   for some positive value of . Spherical spreading corresponds to 
 = 2, but other values of  will reasonably model any direct-path situation, so we refer 
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to this as a direct-path model. If R1 and R2 are the distances of a source and a receiver 
from the target, then the total transmission loss is 1 2 1 2( )( ) ( )t R R R R      , so 

detection will depend on whether the product 1 2R R is smaller than some threshold. The 

region where detection is possible is thus the interior of some Cassinian oval (Cox, 1989). 
The detection threshold depends on the source level, the target strength, the sensitivity of 
the receiver and the background noise level, but all of these can be combined into a single 
constant  with dimensions of length such that detection happens if and only if 

2
1 2R R  . Only the smallest such product need concern us, since detection by any 

source-receiver pair is sufficient for our purposes. We intend to quantify Q, the 
probability that the smallest range product is larger than 2. Q is the nondetection 
probability, and 1  Q is the detection probability. 

Since the sources (receivers) form a Poisson field with density g (h), the two tail 
functions of interest are  and , for all 

r ≥ 0. In each case, the event that the nearest distance is larger than r is the same as the 
event that there are no points in a circle with radius r; that is, we are employing the 
formula for the probability that a Poisson random variable is zero. Since R1 and R2 are 
independent, we have  

2 )gr 2
2( ) exp( )P R r hr  1( ) exp(P R r   

 
2

2 4
2exp( )hr hr dr

  1

0 0

( ) ( ) exp( )2RQ P R f r dr
 

   
2

2

g

r r

 
 . (2.1) 

Let 2 ands g t h   
2

  be dimensionless versions of the source and receiver 

densities, and let x hr . Substituting x, s, and t into (2.1), we have  

 1

0

exp( ( )) ( )x yK y
st

Q x d
x



   , (2.2) 

where 2y st  and K1(y) is a modified Bessel function of order 1 (BESSELK(y,1) in 
Microsoft Excel™). 

The detection probability is  

 3

 1( ) 1 ( )P y Q y1 yK . (2.3)    
The detection probability depends only on the “effort density” parameter y, which 

incorporates all factors of tactical relevance. Figure 1 shows P(y) together with two 
approximations, one of which is accurate for small y and the other for large y. The two 
approximations are  

 
2

ln( ) for small , and ( ) exp( )(1 ) for large 
2 2 2 8

y y
y P y y y

y


   

y 3
( )P y 1   (2.4) 

Both approximations are taken from Abramovitz and Stegun (1964). 
Now suppose that x1 sources and x2 receivers are randomly placed inside a region 

of area A, with no buoys outside of A, and that A is immersed in a larger region A 
wherein a target is placed at random (Figure 7). We wish to choose A to maximize the 
probability that the target is detected. For monostatic systems, the best choice of A is to 
make it as large as possible (nearly all of A), since doing so makes it unlikely that the 
regions covered by the individual buoys will wastefully overlap. This is not necessarily 



true with multistatic systems, the reason being that P(y) is not a concave function when y 
is small, as is evident in Figure 1. 

We assume that the target will not be detected if its position lies outside of A, and 
that a target inside of A essentially faces two infinite Poisson fields with densities 
g = x1/A and h = x2/ A. The word “essentially” is carefully chosen, since the numbers of 
buoys within A would be random in a Poisson field, rather than the fixed numbers x1 and 
x2, but there should be little difference in effectiveness when those numbers are large. 
The first assumption is pessimistic, since targets that are close to A can still be detected, 
and the second is optimistic, since targets near the edge of A do not face complete 
Poisson fields. Perhaps the two assumptions taken together are neutral, at least if A is 
large. This possible neutrality will be tested in Section 6, but our purpose here is simply 
to explore the consequences of making both assumptions. 
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Figure 1: The detection probability P(y), together with two approximations. 

The probability that the target is located in A is A/A, and within A the product of 

the two densities is , so the effort parameter within A is 2
1 2 /( ')gh x x A

2

1 2

2
y x x

A

 


, 

which determines the conditional detection probability. The searcher can have a large y  
in a small area or a small y in a large area, and must decide which is best. The 
unconditional detection probability is  

 
2

1 22 ( ) ( )
( )

x xA P y
PD P y y

A A y

 
  

P y

y


 

, (2.5) 
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where the last equality defines y. The searcher’s problem is to maximize the ratio of P(y) 
to y by adjusting A. Figure 2 shows a graph of the ratio. The maximizing y is about 1.1 
and the maximized ratio is almost exactly 0.4. However, y cannot exceed y, since A 
cannot exceed A. Accounting for this, the maximized PD can be obtained from (2.5). 
Letting the optimized detection probability be , we have  *( )PD y

 . (2.6) 
0.4 ; 1.1

*( )
( ); 1.1

y y
PD y

P y y


  

Example:  Suppose that  = 1km, and that the area to be searched is A = 200 km2. 
Assume that x1 = 20 sources and x2 = 40 receivers are available, so that y = 0.89. Then the 
detection probability, according to (2.6), is PD*(0.89) = 0.36, which is achieved by 
placing all buoys in a fractional (0.89/1.1) part of A. 

If the number of receivers is increased to 160, then y doubles to 1.78, so the buoys 
should now be spread over all of A. The associated detection probability is 
PD*(1.78) = 0.67. 

If the number of receivers is instead decreased to 10, then y shrinks to 0.445, and 
the detection probability becomes PD*(0.445) = 0.18 (exactly half of what it is when 
there are 40 receivers). If the buoys were mistakenly distributed evenly over all of A, 
instead of over the optimal fractional area, the associated detection probability would be 
only P(0.445) = 0.15. 
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Figure 2: A graph of P(y)/ y, the detection probability per unit of effort. 

2.2 Equivalent Covered Area 

A pattern of buoys establishes a probability of detection for a target at point (x,y), 
whether that point is inside or outside of the area within which the buoys are deployed. 
When integrated over the whole plane, that detection function becomes what might be 
called an “equivalent covered area” (C), with equivalency in the sense that, if a target is 
uniformly distributed over a region with area A that is much larger than C, then the 
detection probability is C/A. The question of maximizing C arises. For monostatic buoys, 
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the question is not interesting because the best sonobuoy field (ignoring practical 
questions such as how to construct or monitor widespread fields) would spread out over 
all of A. With multistatic buoys, however, the question is legitimate. The same argument 
as above leads to the conclusion that the effort density in the covered part of an optimal 
field will be about 1.1, and that the resulting equivalent area covered will be  

 2
21(0.4)2C  x x . (2.7) 

We do not propose to do so here, but it would be a reasonable project to design 
multistatic fields that are optimal in the sense of covering the maximum equivalent area, 
but without our assumption that the buoys are scattered randomly. The equivalent area 
covered would of course be larger than (2.7). 

3. SONOBUOY FIELDS THAT INCLUDE POSTS 

There are some good arguments, tactical convenience being one of them, for 
deploying buoys in “posts” that consist of colocated sources and receivers. Cox (1989, p. 
23), in response to a question about his seminal multistatic work, stated that “It makes 
sense to me to use multiple receivers with a single high powered source. One of these 
should be monostatic so that TL1 = TL2. The others are bistatic and provide increased 
coverage and countermeasure resistance.” 

In principle, one could have three types of buoys: posts, receivers, and sources. 
Since we expect receivers to be cheaper than sources, however, we begin by considering 
fields that consist of posts and receivers, but no (independent) sources, just as  
Cox envisioned. 

3.1 Sonobuoy Fields That Include Posts and Receivers, but No 
Independent Sources 

3.1.1 Detection Probability 

Sonobuoy fields of the type considered in this section will be called PR 
(Post/Receiver) fields. There is an identical theory for fields that include independent 
sources, but no independent receivers, since the roles of receivers and sources can always 
be interchanged. One of our objects is to compare the effectiveness of PR fields with that 
of the SR (Source/Receiver) fields that were considered above in Section 2. PR fields 
have no independent sources, whereas SR fields have no posts. 

If any post in a PR field is closer to the target than , then the miss probability is 
zero. Otherwise, the same logic that underlies (2.2) applies, so the formula for miss 
probability in a PR field is similar to (2.2). If s is the dimensionless density of posts and t 
is the dimensionless density of independent receivers, then the miss probability is  
Q(s,st), where  

 ( , ) exp( ( ))
s

v
Q s v x dx

x



   . (3.1) 

The analytic effect of changing sources into posts is to change the lower limit of 
the integral from 0 in (2.2) to s in (3.1), thus decreasing the miss probability. If there are 
no independent receivers (t = 0), the miss probability according to (3.1) is now exp(s) 
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instead of 1. There seems to be no way to express (3.1) in terms of commonly available 
functions. Even so, it is not difficult to approximate Q(s,v) accurately using  
numerical integration. 
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2
2 A

Formula (3.1) assumes that the buoys are spread out in a constant density over the 
whole plane. If x1 posts and x2 independent receivers are spread out randomly over a large 
area A, then we can estimate the detection probability within A by substituting 

, as in Section 2. Also, as in Section 2, we might consider 

the possibility that the buoys should be concentrated in a smaller area A, or even in two 
overlapping areas, one for posts and one for independent receivers. However, the 
motivation for such concentration tactics is less strong here because the posts, considered 
by themselves, should theoretically be spread out over the entirety of A. Consequently, 
we will not consider the potential benefits of buoy concentration in PR fields. 

2
1 /  and /s x A t x  

3.1.2 Cost/Effectiveness 

We next consider the question of how a given budget should be divided between 
sources and receivers, as well as the question of whether PR fields are superior to  
SR fields. 

First, consider the SR case. If sources and receivers cost c1 and c2 each, the cost of 
a buoy field consisting of x1 sources and x2 receivers is 1 1 2 2c x c x . Since the detection 

probability is determined by the product x1x2, it is a calculus exercise to conclude that 
sources and receivers should each consume half of the available budget. If the budget is 

B, the resulting product is 
2

21
1 24

B
x x

c c
 . Substituting this into (2.7), we find that 

2

1 2

(0.4)
B

C
c c


 . If A is the area to be covered, we can also compute

2

1 2

B
y

A c c


 , from 

which the detection probability can be computed via (2.3), or possibly via (2.6) if buoy 
concentration is considered. 

In the special case where c1 = c2, the number of sources in an SR field should 
equal the number of receivers. If, instead, we were to deploy a PR field consisting purely 
of posts that cost 2c1 each, then each post would cover an area of 2, and the total area 

covered would be 
2

12

B

c


. This exceeds the SR coverage by 20%, so we have at least one 

situation (small budget, equally expensive buoys) where a PR field is preferred to an SR 
field. A PR field might be even more effective if it included some independent receivers, 
a possibility that we consider next. 

For subsequent investigations, we impose the cost constraint . There is 
no loss of generality in restricting the coefficient of s to be 1. Suppose instead that each 
source costs c1 and each receiver costs c2, as before, with x1 and x2 being the numbers of 
sources and receivers used to cover an area of size A. If B is the total budget for the 
sonobuoy field, the cost constraint would be 

s ct b 

1 1 2 2c x c x B  , which is equivalent to 



2 2
1 2

1 2

x x B
c c

A A

  2

A


  . If we now divide through by c1 and substitute the 

dimensionless densities s and t for the ratios involving x1 and x2, we have a constraint of 

the proposed form with 2

1

c
c

c
 and 

2

1

B
b

c A


 . Using this condensed notation, we can 

summarize the optimal balance between sources and receivers in an SR field by 

 
2

, ,   , and 2
2 2 4

b b b
s t st y st

c c c
    

b
 (3.2) 

In a PR field, if the cost of each post is the sum of the costs of one source and one 
receiver, then the proper cost constraint with c and b as defined above is . 
Let  be the result of minimizing Q(s,st) subject to that constraint. For 
sufficiently small budgets, the result of this minimization will be that t = 0; that is, no 
independent receivers should be utilized. To prove this, let Q1(s,t) and Q2(s,t) be the 
derivatives of Q(s,st) with respect to s and t, respectively, and define  
the function  

(1 )c s ct b  
( , )Qmin b c

 ( , ) exp( ( ))
s

st dx
H s t s x

x x



   . (3.3) 

Then and 2 ( , ) ( , )Q s t H s t  1( , ) ( , ) exp( ( ))
t

Q s t H s t s t
s

     , as can be 

verified by differentiating Q(s,t) with respect to its two arguments. For (s,0) to be 
minimizing, it is necessary that there exist a Lagrange multiplier  such that (s,0) 
minimizes the expression ( ,Q s s ) ( (1 ) )t s c tc  

,0) exp( )s

, while simultaneously . 

The first-order minimization conditions are that Q1(s,0) + (1+c) = 0 and 
Q2(s,0) + c ≥ 0. Since 

/(1 )s b c 

1(Q s    , the first equation requires 

exp( ) /(s 1 )c  
exp( ) (s H


,0) /(1 )s c c 

. Substituting this into the inequality, we must 
have . Let H(s) be the left-hand side of this inequality: 

 
0

1 exp( )
( ) exp( ) exp( ) exp( )[ ln( ) ]

s

s

dx u
H s s x s du u

x u


  
      , (3.4) 

where  is Euler’s constant (0.577 …). Figure 3 shows this function. 
If the budget is b, and if H(b/(1+c)) is smaller than the cost ratio c/(1+c), then the 

entire budget should be spent on posts. It is still possible that an SR field might be better 
than even the best PR field, so in general we have  

 min( , ) min{exp( ), *( )},  for small 
1

b b
Q b c PD

c c
 


b . (3.5) 

 
Example: Consider the case (b,c) = (1,1). Since H(0.5) = 0.461, which is smaller 

than 0.5, the best PR field will have no independent receivers. However, it is the second 
term in (3.5) that is minimizing, so the best field is actually of type SR. If b is reduced 
while c remains 1, the best PR field will still contain only posts, but will also be superior 
to any SR field, as in the earlier example where covered areas were compared. 
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Figure 3: The function H(s) is continuous, concave, and increasing, with H(0)=0. 

Except for small budgets, we have no analytic expression for , and our 
only additional observation is that the optimal s in a PR field will always be at least as 

large as 

( , )Qmin b c

2(1 )c
b

. This is because that value maximizes the st product, and Q(s,v) is a 

decreasing function of its first argument. 
 
Example: Figure 4 shows a typical plot of Q(s,st) versus s when (b,c)=(1, 0.4). 

The graph demonstrates that (1,0.4) 0.43Qmin  . The optimal value of s is about 0.47, 
which exceeds the value (0.36) that maximizes the st product. H(1/1.4) is about 0.5, 
which exceeds c/(1+c), so it should not be surprising that independent receivers are 
utilized in this example, as well as posts. 
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Figure 4: PR miss probability as a function of s when b=1 and c=0.4. 
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Figure 5 shows the miss probability for the best SR and PR fields when all buoys 
are equally expensive, with PR winning for small budgets. The SR curve is based on (2.6) 
with y = b (y and b are equal when c = 1), while the PR curve is based on (3.1). The 
initial slope of the SR curve is 0.4. The initial part of the PR curve employs no 
receivers, and is consequently equal to exp(b/(1+c)), the initial slope of which is 0.5. 
This comparison of initial slopes explains why PR is superior when the budget is small 
and all buoys are equally expensive. The initial slope of the SR curve is, in general, 

0.4 / c , while the initial slope of the PR curve is 1/(1+c). By comparing the two 
expressions, it is not difficult to show that the PR field will be superior for small budgets 
as long as . For more extreme values of c, the SR field is superior for all 
budgets. The SR field is superior for large budgets even when c = 1, as Figure 5 makes 
clear. Depending on circumstances, either type of field can be superior. If the SSQ-125 
active buoy turns out to be as expensive as estimated in the introduction (c = 1/7), then, 
regardless of budget, an SR field will be more cost/effective than a PR field. 

0.25 4c 

Lack of universal dominance of either the PR or the SR type suggests that the 
optimal sonobuoy field might actually include all three of the fundamental buoy types: 
posts, free receivers, and free sources. This possibility is not covered by any of the above 
developments, so we examine it in the next section. 
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Figure 5: Miss probability for SR and PR fields when sources and receivers have the 

same cost (c=1). 

3.2 Sonobuoy Fields That Include Posts, Independent Receivers, and 
Independent Sources 

3.2.1 Detection Probability 

In the general case, the density of posts is f, the density of free sources is g, and 
the density of free receivers is h. Let Rf, Rg, and Rh be the distances from the target to the 
nearest post, free source, and free receiver, respectively. The nondetection event can be 
decomposed into two mutually exclusive parts E1 and E2, where 
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 (3.6) 

The commas separating events in (3.6) should be read “and”. The target will not be 
detected if and only if there is no post within  of the target, and if every product of two 
ranges exceeds 2. These are the last four events in both E1 and E2, and the first event 
simply partitions on whether Rg is small (E1) or large (E2) (nondetection is also possible if 
Rg = , but that possibility is safely ignored in (3.6) because it has probability zero). 

In the expression for E1 in (3.6), the second event can be omitted because it is 
implied by the first and third, and the fifth event can be omitted because it is implied by 
the first, third and fourth. In E2, the third event can be omitted because it is implied by the 
first and second. Now let Rs and Rr be the distances from the target to the nearest source 
(free or not) and receiver (free or not). Thus, min( , )s f gR R R and min( , )r f hR R R . 

Random variables Rs and Rr are easily described mathematically, since the posts, together 
with either the independent sources or independent receivers, constitute Poisson fields 
with densities f + g (sources) and f + h (receivers). Furthermore, given the above 
observations, E1 and E2 can be expressed as  
 2 2

1 2( ), ( ) and ( ), ( )r g s s hgE R R R E R R R         . (3.7) 

After conditioning on Rg in E1 and Rs in E2, we have 
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     . (3.9) 

Now, let s = f2, t = g2, and z = h2 be the dimensionless densities of posts, 
sources, and receivers, respectively, and substitute u = gx2 into (3.8). We  
then have  

 1

0

( ) exp( ( ))
t s z

P E u du
u


   . (3.10) 

Similarly, substituting u = (f + g)x2 into (3.9), we have 
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s t

z s t
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      , (3.11) 

where Q() is the function defined in (3.1). Define the sum of (3.10) and (3.11) to be 
Q(s, t, z): 
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. (3.12) 

This function represents the miss probability when a target is subjected to 
multistatic detections by posts, sources, and receivers in the dimensionless densities s, t, 
and z, respectively. The arguments t and z can be interchanged, although the form of 
(3.12) does not make that apparent. 



3.2.2 Optimization 

While we have no proof of the fact, it appears from extensive experimentation 
that the best sonobuoy field never includes all three types, whatever the budget or the 
costs of sources and receivers. Given x1 sources and x2 receivers, together with the ability 
to deploy any pair as a post, the best sonobuoy field will always have as many posts as 
possible (a PR field) or none at all. Except in establishing this conclusion, formula (3.12) 
appears to have little use. 

4. RELIABILITY AND DIRECT BLAST 

The idea that detection is merely a matter of being close enough to the target 
underlies all of the above calculations, but is only approximately true in the real world. 
One reason for this is that some buoys may not function correctly, in which case their 
distances from the target are immaterial. This possibility is easily handled theoretically in 
SR fields. If rs and rr are the reliabilities of sources and receivers, it is simply a matter of 
replacing the dimensionless densities s and t by srs and trr, respectively. This is because 
Poisson fields “thinned” in this manner remains Poisson fields. A similar argument will 
not work for PR fields because a post might get effectively turned into an independent 
source if its receiver should not function. 

Proximity might not be sufficient even when all buoys function as intended. In 
multistatic sonar systems, receivers hear the transmitted signal directly, in addition to the 
signal reflected from the target. This “direct blast” is actually necessary for locating the 
target because the difference in time between the direct and reflected signals establishes 
an ellipse upon which the target must lie. However, the direct blast is much stronger than 
the reflected signal, and may completely obscure it if the time difference in arrivals is 
small enough. The principal situation where this happens is when the target is more or 
less directly between the source and the receiver. A simple approximation of the effect is 
the “dead zone” shown in Figure 6, where receivers will not detect the target because of 
the direct blast arriving nearly simultaneously. The angle  measures the extent of the 
pie-shaped dead zone, with  =  corresponding to no dead zone at all. 

It is not difficult to include the effect of dead zones in a Monte Carlo simulation 
that begins by simulating the locations of the target, the sources and the receivers. For 
each source/receiver pair that passes the proximity test, one simply checks whether the 
receiver is in the dead zone of the source, declaring the detection attempt to be a failure if 
so. The resulting simulation is only slightly more complicated than one without dead 
zones. Unfortunately, however, this simplicity does not extend to analytic attempts to 
find a generalization of (2.3). We are not aware of any exact formulas for detection 
probability, but the following theorems at least offer lower bounds. 

 
Theorem 1: In an SR field, let s and t be the dimensionless densities of sources 

and receivers, respectively, as in Section 2, but add the requirement that the receiver buoy 
in a successful pair must not be in the dead zone of its source. Let /p   , and 

let 2y p st . If y is substituted into (2.3) one has a lower bound on the detection 

probability. 
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Proof: Let E be the event that the target is detected by the source that is closest to 
it. E will happen if and only if there is at least one eligible receiver that is sufficiently 
close to the target; a receiver being “eligible” if and only if it is not in the dead zone of 
the closest source. The probability that any receiver is eligible is p for each independent 
receiver, so eligible receivers are a Poisson field with dimensionless density pt. To 
calculate P(E), we can now proceed as in the derivation of (2.3), except that pt needs to 
substituted for t. The effect of this is that y is modified as in the statement of the theorem, 
and . This is a lower bound on the detection probability because it is 

possible for the target to be detected even when the closest source fails. QED 
1( ) 1 ( )P E yK y 

Dead Zone Source 

Target 

 
Figure 6: Illustrating a dead zone where receivers are useless on account of  

direct blast. 
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/p

Theorem 2: In a PR field, let s and t be the dimensionless densities of posts and 
receivers, respectively, as in Section 3, but add the requirement that the receiver buoy in a 
successful pair must not be in the dead zone of its source. Let  
1 ( , )Q s pst

. Then 
 is a lower bound on detection probability, where Q() is the function defined 

in (3.1). 
Proof: If the post that is nearest to the target is closer than , then detection is 

certain because a post’s own receiver cannot be in a dead zone. Let E be the event that 
the nearest post is farther away than , but nonetheless detects the target through some 
other eligible independent receiver. E will happen if and only if there is at least one such 
receiver that is sufficiently close to the target. The probability that any independent 
receiver is eligible is p, so eligible receivers are a Poisson field with dimensionless 
density pt. To calculate P(E), we can now proceed as in the derivation of (3.1), except 
that pt needs to substituted for t. The result of this is as stated in the theorem. This is a 
lower bound on the detection probability because it is possible for the target to be 
detected even when the closest post fails. QED 
 

In both theorems, dead zones are handled as if the independent receivers had a 
reliability of p. Receivers that are part of a post are in effect assumed to be perfectly 
reliable in Theorem 2. 

The question arises as to whether the upper bounds defined in Theorems 1 and 2 
are sharp. We note that the bound in both theorems is exact when θ = π or (trivially) 



when θ = 0. For intermediate values, the sharpness question will be tested by simulation 
in Section 6.2. 

5. CAVEATS 

We emphasize that all of the above analysis applies only to the direct-path 
transmission mode. The primary sonar modes where such a transmission loss model does 
not apply are the bottom-bounce and convergent-zone (CZ) modes. Consider the latter 
case, and assume that there is only one CZ at a distance R* (typically about 50 km) with 
width  (typically about 5 km). There will be a CZ detection if and only if the circular 
annulus about the target at distance R* and width  contains at least one buoy of each 
type. Since the area of this annulus is (approximately) 2R*, the probability of this is  

 
 . (5.1) 2(1 exp( 2 * ))(1 exp( 2 * )) (2 *)PD R g R h R gh          

 
The approximation in (5.1) depends only on the product gh, so seemingly there is 

an analogy with the direct-path case. However, the approximation is actually an upper 
bound that is accurate only when PD is small. For sonobuoy fields that are dense enough 
to assure a large detection probability, the CZ case differs significantly from the direct 
path case. 

 
Example: Suppose that R*=50 km, =5 km, g = 0.001/km2, and h = 0.002/km2. 

Then, using (5.1), PD = 0.76. Suppose there is also a direct path mode with  = 10 km. 
The associated y is about 0.89, and the associated direct path detection probability from 
(2.3) is about 0.36, significantly smaller than the CZ probability. When a CZ exists, it 
will generally provide most of the detection probability, as it does here. However, CZs 
can be ephemeral enough to make tracking difficult even in monostatic systems, and 
dependence on multiple CZs in the multistatic case is unlikely to improve the situation. 

 
There are other assumptions made above that can differ significantly from the real 

world. Direct blast regions only approximately resemble the conical region of Figure 6. 
The pervasive assumptions of radial symmetry made above can be significantly false in 
the ocean, where transmission loss often depends on direction, as well as range. Our 
analysis makes no allowance for target motion, or for any phenomenon that might make 
 a function of time. Better forecasts of detection probability in a particular instance will 
always come from simulations that account for some of these phenomena. 

6. CALIBRATION FOR SR FIELDS 

6.1 The Neutrality Assumption 

In this section, we test the neutrality assumption lying behind (2.5) and (2.7). 
Recall that A is the area within which the buoys are placed, while A is the potentially 
larger area within which targets are to be found (Figure 7). The neutrality assumption is 
that targets detected outside of A will compensate for targets not detected inside of A. 

 14



The assumption is clearly optimistic if A and A are equal, since in that case there are no 
targets outside of A. It is just as clearly pessimistic if buoys are very dense, since in that 
case all targets outside of A that are within  of A will be detected, in addition to all 
targets inside of A. Much depends on the density of buoys and the relationship between 
A and A. We begin by assuming that A is much larger than A, and that A has been 
adjusted to maximize the detection probability; that is, we wish to compare the theoretical 
equivalent covered area C from (2.7) with an experimental version Cexp. 

To estimate Cexp, without loss of generality we first take  =1. We also take 

1 22 /A x x  1.1 , since this is the area that theoretically maximizes detection 

probability. All buoys are placed within a square of side L with that area, so L2=A. Since 
detection is impossible for targets more than 1 unit away from this square, we generate 30 
targets at random within a square of side L+2 (so A = (L+2)2), and count the number X 
that are detected. A target is detected if the product of its distances from the closest 
receiver and the closest source is smaller than 1. This experiment is repeated 3,000 times; 
that is, all the buoys are randomly relocated in A and each such pattern is tested against 
30 targets randomly located in A. Let X be the total number of targets detected in all 
3,000 replications. Then the equivalent covered area is exp / 90,000C AX . 
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Figure 7: A coordinate framework for simulation experiments. 

x1 sources and x2 receivers 
are placed at random in the 
inner square A 

the target is placed at random in the outer square A 

Table 1 shows the ratio Cexp/C for various values of x1 and x2. It should be evident 
that the neutrality assumption is optimistic, but only by a small amount. The average of 
all 100 ratios is 96.6%, so the theoretical area coverage is about 3% high. Some idea of 
the variability of results can be obtained by comparing symmetric entries (x1,x2) and 
(x2,x1), since both have the same theoretical mean. 



5 10 15 20 25 30 35 40 45 50 AVG
5 0.974 0.957 0.966 0.960 0.952 0.963 0.955 0.955 0.957 0.951 0.959

10 0.946 0.976 0.959 0.972 0.969 0.961 0.955 0.965 0.958 0.965 0.963
15 0.957 0.957 0.958 0.972 0.956 0.968 0.962 0.967 0.955 0.966 0.962
20 0.963 0.953 0.968 0.965 0.972 0.963 0.972 0.963 0.965 0.962 0.965
25 0.956 0.963 0.965 0.968 0.976 0.975 0.968 0.967 0.968 0.983 0.969
30 0.958 0.964 0.963 0.971 0.967 0.963 0.976 0.964 0.977 0.971 0.968
35 0.947 0.966 0.960 0.967 0.966 0.971 0.973 0.969 0.978 0.977 0.967
40 0.960 0.969 0.971 0.958 0.972 0.974 0.968 0.972 0.976 0.969 0.969
45 0.962 0.965 0.967 0.971 0.970 0.975 0.985 0.970 0.974 0.976 0.972
50 0.952 0.972 0.967 0.978 0.974 0.975 0.969 0.971 0.973 0.978 0.971

AVG 0.957 0.964 0.965 0.968 0.967 0.969 0.968 0.966 0.968 0.970 0.966  

Table 1: Rows and columns are labeled by the number of sources and receivers, 
respectively. The table entries are the ratio Cexp/C, the ratio of experimental to 

theoretical equivalent covered area. 

We next consider the case where A and A are both the same square, in which case 
we expect the theory to be optimistic. Without loss of generality, we take A to be a unit 
square, and place all buoys and the target within it. The fundamental experiment is now 
to measure Z, the product of the distances from the target to the nearest source and the 

nearest receiver, recording a detection if Z 2 . Alternatively, let 1 22Y x x Z and 
2

1 22y x x  , so that detection is equivalent to the event Y ≤ y. If we now measure the 

cumulative distribution function of Y, we can deal with all values of  simultaneously. 
The fundamental experiment is repeated with 30 independent targets for each buoy 
configuration, and then for 3,000 random buoy configurations. The results are shown in 
Figure 8 for 20 sources and 40 receivers, where “data” (the sample cumulative 
distribution function or sample CDF) is compared with “theory” (formula (2.3) for P(y)). 
It can be seen that the theory is indeed optimistic in this case. The contrast would be even 
larger if the sample CDF were compared with (2.6) instead of (2.3), since theory would 
advise concentrating the buoys in a smaller area when y is small. Results for other 
numbers of sources and receivers are visually identical, so are not shown. 

Figure 9 shows a similar comparison for a case where the targets are located in an 
area A that is larger than A. Specifically, A has side of 1.2 while A still has a side of 1, so 
A/A is 1/(1.2)2, or 0.694. This ratio is an upper bound on the theoretical detection 
probability because the theoretical assumption is that targets outside of A will not be 
detected. If  ≥ 0.1, however, every point in A (except in the corners) is within  of some 
point in A, so a sufficiently large density of buoys within A will detect nearly every 
target. Figure 9 shows that the sample CDF agrees closely with the theoretical formula 
(2.3) for small values of the effort density within A, but that (2.3) predicts too small a 
detection probability in dense fields (large values of y). With 20 sources, 40 receivers, 
and  = 0.1, y is 1.78—approximately the value at which the two curves begin  
to diverge. 
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Figure 8: Comparing theoretical and experimental detection probabilities in a case 

where 20 sources and 40 receivers are randomly distributed over the same area that 
contains the target. 
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Figure 9: Comparing theoretical and experimental detection probabilities in 

a case where 20 sources and 40 receivers are randomly distributed in an area A that 
is smaller than the area that contains the target. With a high effort density in A, 

some targets outside of A are detected experimentally, but not in theory. 
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6.2 A Direct Blast Experiment 

Each number in Table 2 is the ratio of an experimentally determined effective 
area of coverage to the theoretical number determined from (2.7), as in Table 1. The 
experiment is as in Section 6.1, except that  

 px2 is substituted for x2 in calculating the effective area covered from 
(2.7), as well as in calculating A, where p = /; 

 in each replication, the sonobuoy field is generated independently within 
A for each target; and 

 an angular test is added to the proximity test before a detection is 
recorded, as pictured in Figure 6. 

Ten thousand replications are carried out in a Monte Carlo simulation where each 
(source, receiver) pair of buoys is tested until some pair finally detects the target, in 
which case the detection counter is incremented and a new replication begun, or no 
detection is recorded if no pair detects the target. 

The case  =  is covered by Table 1, which shows that the theoretical formula 
(2.7) is about 3% optimistic. When  = 3/4, Table 2 shows that the formula is about 5% 
pessimistic. When  = /2, Table 3 shows that the formula is about 13% pessimistic, and 
when  = /4, Table 4 shows that the formula is about 27% pessimistic. Presumably the 
increasing pessimism is because sources other than the closest source become 
increasingly important as the direct blast effect becomes stronger. 

 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 AVG 
5.00 1.06 1.05 1.03 1.04 1.01 1.03 1.04 1.02 1.03 1.04 1.04

10.00 1.04 1.05 1.05 1.03 1.04 1.07 1.07 1.04 1.05 1.04 1.05
15.00 1.01 1.07 1.02 1.03 1.04 1.04 1.06 1.05 1.03 1.04 1.04
20.00 1.04 1.04 1.02 1.05 1.06 1.02 1.04 1.05 1.07 1.05 1.04
25.00 1.05 1.03 1.05 1.03 1.06 1.05 1.05 1.02 1.02 1.05 1.04
30.00 1.03 1.06 1.05 1.04 1.03 1.05 1.06 1.07 1.06 1.04 1.05
35.00 1.02 1.06 1.04 1.07 1.04 1.05 1.05 1.02 1.04 1.05 1.04
40.00 1.01 1.05 1.03 1.03 1.02 1.01 1.04 1.05 1.07 1.08 1.04
45.00 1.00 1.05 1.03 1.04 1.03 1.06 1.06 1.05 1.03 1.04 1.04
50.00 1.02 1.01 1.05 1.04 1.05 1.06 1.02 1.05 1.06 1.03 1.04

AVG 1.03 1.05 1.04 1.04 1.04 1.04 1.05 1.04 1.05 1.05 1.04

Table 2: Rows and columns are labeled by the number of sources and receivers, 
respectively. The table entries are the ratio Cexp/C based on 10,000 repetitions of the 

experiment of locating a target in an SR field of 20 sources and 40 receivers,  
with  = 3/4. 



 

 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 AVG 
5.00 1.13 1.14 1.10 1.15 1.10 1.12 1.14 1.10 1.14 1.12 1.12

10.00 1.14 1.14 1.18 1.12 1.11 1.12 1.12 1.12 1.12 1.12 1.13
15.00 1.12 1.09 1.15 1.12 1.16 1.12 1.15 1.13 1.14 1.15 1.13
20.00 1.15 1.13 1.13 1.12 1.11 1.13 1.13 1.13 1.13 1.09 1.13
25.00 1.10 1.12 1.11 1.14 1.12 1.13 1.16 1.14 1.13 1.15 1.13
30.00 1.09 1.13 1.14 1.13 1.18 1.14 1.15 1.14 1.15 1.14 1.14
35.00 1.09 1.11 1.18 1.16 1.12 1.12 1.13 1.11 1.15 1.16 1.13
40.00 1.10 1.11 1.13 1.12 1.14 1.14 1.16 1.15 1.15 1.14 1.13
45.00 1.11 1.09 1.14 1.14 1.13 1.14 1.15 1.13 1.16 1.13 1.13
50.00 1.08 1.10 1.11 1.13 1.14 1.17 1.13 1.14 1.16 1.12 1.13

AVG 1.11 1.12 1.14 1.13 1.13 1.13 1.14 1.13 1.14 1.13 1.13

Table 3: As in Table 2, but with  = /2. 
 
 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 AVG 

5.00 1.29 1.23 1.25 1.22 1.21 1.24 1.21 1.21 1.18 1.20 1.23
10.00 1.26 1.23 1.25 1.27 1.29 1.26 1.25 1.26 1.24 1.22 1.25
15.00 1.26 1.25 1.28 1.28 1.27 1.29 1.28 1.28 1.25 1.28 1.27
20.00 1.21 1.28 1.28 1.29 1.29 1.27 1.27 1.29 1.29 1.25 1.27
25.00 1.24 1.29 1.26 1.26 1.28 1.28 1.28 1.25 1.27 1.27 1.27
30.00 1.22 1.26 1.25 1.27 1.29 1.29 1.29 1.30 1.30 1.26 1.27
35.00 1.20 1.26 1.29 1.28 1.24 1.29 1.29 1.28 1.29 1.26 1.27
40.00 1.26 1.29 1.24 1.30 1.28 1.31 1.28 1.25 1.30 1.28 1.28
45.00 1.24 1.28 1.25 1.26 1.25 1.26 1.25 1.28 1.28 1.27 1.26
50.00 1.25 1.25 1.28 1.27 1.29 1.27 1.28 1.30 1.29 1.28 1.27

AVG 1.24 1.26 1.26 1.27 1.27 1.27 1.27 1.27 1.27 1.26 1.26

Table 4: As in Table 2, but with  = /4. 

7. SUMMARY 

We have developed several simple formulas for approximating the detection 
probability of a multistatic sonobuoy field, all of which depend on the monostatic 
detection distance . Either an SR field (no posts) or a PR field (all sources are posts) 
may be the most cost/effective, depending on the budget level and the relative costs of the 
two buoy types. If x1 sources and x2 receivers are used to detect a target within an area A, 
then the dimensionless coverage ratio, 

2
1 22 x x

y
A


 , 

is fundamental. If y is small compared to 1, then detection within A is unlikely, or the 
opposite is true if the ratio is large. 
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